

Motion

Definitions and Formulae

Variables	Type of quantity	SI units	Definition
Distance	Scalar	m	The total length of space travelled between two points.
Displacement	Vector	m	The shortest distance from initial point to final point in a given direction.
Time taken	Scalar	S	The time interval during a motion.
Speed	Scalar	m/s	Rate of change of distance travelled.
Velocity	Vector	m/s	Rate of change of displacement.
Acceleration	Vector	m/s^2	Rate of change of speed or velocity.

Remain at rest

Distance or displacement = constant

Speed or velocity = 0

Acceleration = 0

For constant motion

Distance or displacement changing

Speed or velocity = constant

Acceleration = 0

For constant acceleration

Distance or displacement changing

Speed or velocity changing

Acceleration = constant

č

$$speed = \frac{distance}{time \ taken}$$
, $average \ speed = \frac{total \ distance \ travelled}{total \ time \ taken}$
 $velocity = \frac{displacement}{time \ taken}$, $average \ velocity = \frac{total \ displacement}{total \ time \ taken}$
 $acceleration = \frac{change \ in \ speed \ or \ velocity}{time \ taken}$, $change = final - initial$

- Total distance travelled = area under the speed-time graph
- Total displacement = area under the velocity-time graph

Equations of motions, s, u, v, a, t

$$v = u + at$$
$$v^{2} = u^{2} + 2as$$
$$s = \frac{(u+v)}{2}t$$
$$s = ut + \frac{1}{2}at^{2}$$
$$s = vt - \frac{1}{2}at^{2}$$

Where

s = distance or displacement,m u = initial speed or velocity,m/s v = final speed or velocity,m/s a = acceleration,m/s²